THE IMPORTANCE OF WATER TO THE U.S. ECONOMY PART 1: BACKGROUND REPORT

Public Review Draft

Office of Water U.S. Environmental Protection Agency September 2012

> February 25, 2013 Laura Johnson laura.r.johnson@nebraska.gov

Systems-level understanding of:

- Water's role in the economy
- Competition and interdependencies between and among various water uses
- Ways to improve water management to promote *environmentally sustainable* economic growth while *maximizing the economic value* derived from the utilization of water

Economic Perspectives

 Microeconomic efficiency: Relate water value to its relative scarcity, alternative uses and opportunity costs of those uses

Sustainability: Consider the value of water as a function of direct and indirect impacts associated with it's use both immediately and into the future within an integrated system (economic, social & environmental)

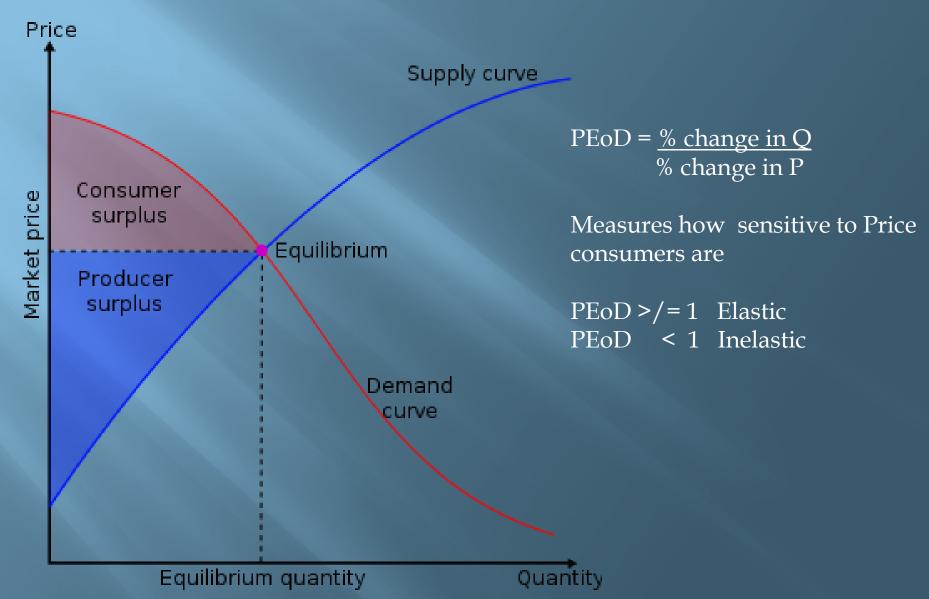
The Holistic Economy "Spaceship Earth"

Ecosystem Services

Socio-political System

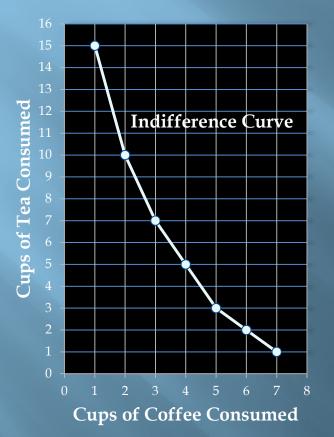
Market Economy

Economics

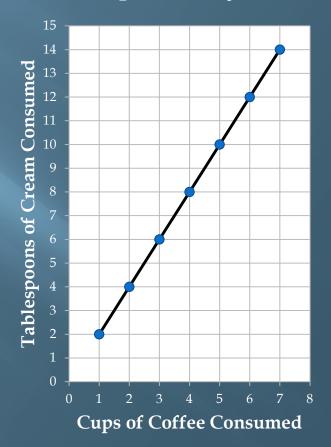


SOCIAL SCIENCE

 Analyzes production and consumption of goods and services

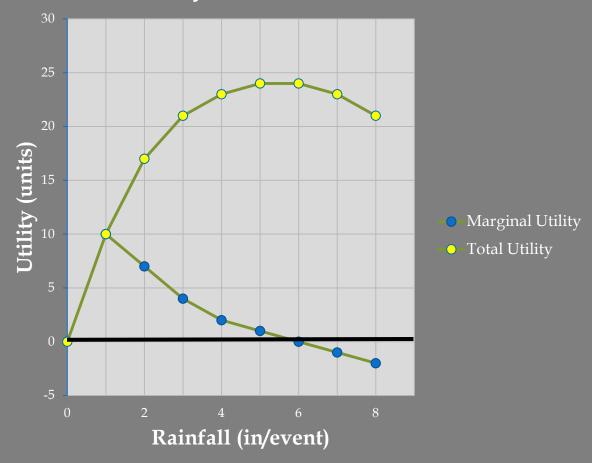

- Assumes
 - 1. Perfect Information
 - 2. Rational Choices
 - 3. Maximize utility given a budget constraint

Basic Supply and Demand



Marginal Rate of Subsitution

MRS of Substitutes


Complimentary Goods

Law of Diminishing Marginal Utility

Inches of	Total	Marginal	
Rainfall per	Utility,	utility,	
event	units	units	
0	0		
1	10	10	
2	17	7	
3	21	4	
4	23	2	
5	24	1	
6	24	0	
7	23	-1	
8	21	-2	

Utility Derived from Rainfall

Tragedy of the Commons

<u>Causes</u>

- Owned by everyone/no one
- All have access
- Exploitation = Overpopulation

Solutions

- Government regulates
- Restrict access
- Incentives to conserve
- Change society's values

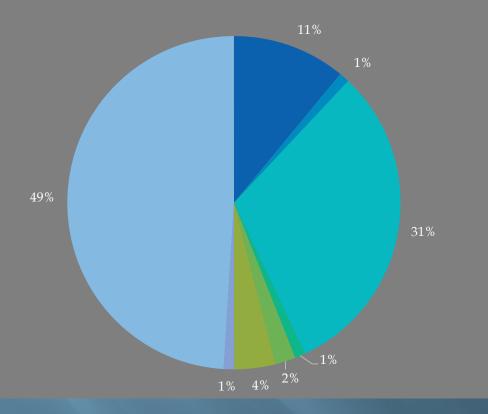
Key Sectors of the U.S. Economy

PWS

Irrigation

Livestock

Aquaculture


Industrial

Mining

Domestic Water Supply

Themoelectric Power

Distribution of U.S. Water Withdrawals (2005)

In-Stream Uses

- Hydropower

- Commercial Fishing
- Commercial Navigation
- Recreation & Tourism

Public Water Supply Systems

- Added Value GNP \$53 billion *doesn't cover both O&M
- 7 BGD or 16% water loss due to failing Infrastructure
- Studies suggest an additional \$10-20 billion/year for 20 yrs to maintain nations PWS = D *\$1/cu-m covers O&M Lincoln = \$0.71/cu-m

 Subsidies distort true S cost and politics keep P down *San Antonio pays \$ 19.64/mo *Lincoln pays \$20.03/mo (raises Lincoln bill by 41% to \$28.31)

- MV of an additional permanent ac-ft = \$4,500
- PEoD short run = -.41 (Inelastic)
 Long run PEoD is higher!

Agriculture

Added Value (GNP)= \$297.2 billion
 *Export 30% water intense crops
 2008 = 14.9 BGD, 3.6% of annual
 US water consumption

- MRTS substitute labor, equipment and practices for water
 - 1950 applied 3.55 ac-ft/acre
 2005 applied 2.35 ac-ft/acre
 *decrease by 1.2 ac-ft/acres
 - Productivity increased by 152% & population nearly doubled
 - True Value (P) is skewed by P floors & externalities

 Barriers to water transfers where there is no institutional and physical infrastructures to allow efficiency in use

No formal market to value water

Valuation Method	Price (ac-ft)
Acquisition Cost (Surface Water)	\$63.00
Acquisition Cost (Groundwater)	\$94.00
Factor Input Method	\$98.00
Irrigation Districts (Surface Water)	\$100.00
Permanent Transfer (Ag to Ag)	\$1,825.00
Permanent Transfer (Ag to Municipality)	\$4,562.00
Temporary Transfer (Ag to Ag)	\$30.00
Temporary Transfer (Ag to Municipality)	\$119.00

Manufacturing

- Added Value = \$2.4 trillion
 \$6.7 billion or 0.2% of that goes to abatement cost
- Limited data indicates MV of water \$736/ ac ft

- Water withdrawals have decreased by 30% since 1985, attributed to increases in efficiency & 2/3 of water used now being reused
- MRTS using air for cooling oppose to water
- PEoD = -0.58, inelastic at current prices, is different along points on the D curve (user have and will continue to invest in measures to decrease future demand)

Mining & Energy Extraction

- 2007 value added GNP = \$417.8 billion, uses 4 BGD or 1% of US total
- Most water is self-supplied or produced: no reliable market data is available
 - Texas study from 1990-2003 purchased water from \$40-2,600 ac ft/yr
- Need more information to determine the value of water to mining

*Powder River Basin, WY Mountain to mining for coal Ave revenue/ metric ton extracted = \$15.42 (Iron has higher value than gold at \$93 oppose to \$27. Reflects the high ratio of material extracted to final product

Electric Power

- Value Added GNP = \$197 billion, est. MV = \$100 ac-ft
- Largest user at 49% US total or 200 BGD withdrawals yet only 2.5% or 10 BGD consumed
- Price subject to Government regulations not markets

- CWA triggered the use of water recirculating cooling systems, dropped withdrawals from 570 to 20 G/kWh generated yet consumption increased from <1 to 8.5 G/kWh due to evaporative cooling losses
- Trends indicate a decrease in withdrawals by 4.4% yet an increase in consumption by 22.2% from 2005-2030
- 22% Thermoelectric generation capacity is located within counties at high or extreme levels of water sustainability risk (EPRI 11)

*Beaver Valley Power Station, PA water evaporation from towers Total value of water is infinite yet Marginal Value can be relatively low!

Water doesn't fit into typical economic analysis

•Water in the US has historically been free and plentiful and is valued incorrectly b/c scarcity is not seen, externalities aren't included and P is artificially keep low

•Marginal Value changes by location, use, competition and scarcity over time and is relative to the last unit consumed!

Sector	Total Revenue (billions) 2010	Ave. Est. Marginal Water Value (ac-ft)	Total Water Use (TG)	Total Marginal Water Value (trillions)	Marginal Water Value as a % of Revenue
PWS	53	4,500	16.1	23.6	44,528.3%
Agriculture	297.2	1,800	56.2	32.9	605.7%
Manufactoring	2,400	736	6.6	1.6	66.7%
Mining & Energy					
Extraction	417.8	202	1.5	0.1	23.9%
Electric Power	197	100	73	2.4	1,218.3%
Total	Sum = 3365	Ave = 1,468	Sum = 153.4	73.3	2,178.8%

EPA. "Importance of Water Study." *EPA United States Environmental Protection Agency.* 22 Jan. 2013. Web. 22 Feb. 2013. http://water.epa.gov/action/importanceofwater/study.cfm